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Spontaneous surface roughening induced by surface interactions between
two compressible elastic films
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The surfaces of soft thin elastic films bonded to two rigid substrates become spontaneously rough due to the
attractive intersurface interactions when the intersurface distance declines sufficiently to produce a critical
force. The effects of compressibility on the conditions for surface roughening and its length scale are investi-
gated. For highly compressible films (n less than 0.25), surface roughening is not possible. The critical force
required for the onset of instability and its wave number both decline with increased compressibility. The
wavelength of the instability is influenced much more by the properties of the more compliant film@compliance
equals (122n)h/2m(12n)]. There is an abrupt change in the wavelength as the compliances of the two films
become nearly equal.
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ou
n
y

aa
h
r

ta
m

he
n

ha
o
th

f t

a
en
ti

if-

e

i
i-
th
rt

ls

e
e
p

rved

re-

ta-
.

ace
the
an

of
m-
e in
the
.

ct-
re
a

ub-
-

s
rial

.
by

in,
ow
The
ed
the
ma-

in-l a
I. INTRODUCTION

Surfaces of soft thin elastic films undergo spontane
roughening when brought in close contact proximity to a
other surface@1,2#. The surface instability is engendered b
the attractive intersurface forces, for example, van der W
and electrostatic forces, when the force exceeds a thresh
value @3,4#. The surface roughness thus spontaneously p
duced plays an important role in the understanding of con
mechanics, friction, and adhesion at soft interfaces. So
recent experiments@1,2,5# show that in contrast to the liquid
films @6–9# where the length scale and morphology of t
instability depend very strongly on the precise nature a
magnitude of the interactions, the periodic wavelength t
develops in thin solid elastic films is largely independent
the nature and magnitude of such interactions. Moreover,
wavelength depends almost linearly on the thicknesses o
films.

The surface instability of elastic films in proximity to
contactor occurs due to the interplay of the interaction
ergy, which tries to deform the film surface, and the elas
energy which tries to restore the initial configuration@3,4#.
The origin and nature of this purely elastic instability is d
ferent from the roughening of solid films@10–13#, where
either surface diffusion, viscoelasticity or plasticity of th
films play the dominant role.

The instability causes the surfaces of the films to jump
contact in a periodic way@1,2#, thus forming nanoscale cav
ties. This phenomenon has an intimate relationship with
formation of type-I cracks@14# as the sufaces are pulled apa
@2#. A related problem of debonding by chain pullout has a
received attention@15#.

Some applications such as the peeling of adhesives@16#,
wafer debonding@17#, adhesion of cells to coated substrat
involve two interacting elastic layers. The contact betwe
metal surfaces carrying thin oxide layers is another exam
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where spontaneous surface roughening has been obse
recently@18#.

The stability and pattern formation have been studied
cently for incompressible films@19,20#. The objective of this
paper is to explore the effects of compressibility on the s
bility and bifurcation behavior of the two-film system
Among other things, we show that the length scale of surf
roughening increases with increased compressibility and
instability is absent in highly compressible materials that c
simply jump into contact uniformly. Also, the wavelength
instability is governed to a greater extent by the more co
pressible film. The results obtained here are of relevanc
the design and interpretation of important experiments on
adhesion instability and crack formation in these systems

II. MODEL DESCRIPTION

The schematic diagram of two thin elastic films intera
ing with each other is shown in Fig. 1. The elastic films a
bonded rigidly to a substrate and a contactor, forming
substrate-contactor system, each with its own film. The s
strate film is called filma and its properties such as thick
ness, shear modulus, and Poisson’s ratio are denoted byha ,
ma , and na , respectively. Similarly, the contactor film i
called film b and its properties are denoted by the mate
properties with the subscriptb. ~The elastomeric films may
widely differ from each other in their physical properties!
The separation distance between the two films is denoted
d0. Below a certain critical separation distancedc the films
no longer remain planar, but a surface instability sets
making the surfaces rough. The broken lines in Fig. 1 sh
periodic surface roughening under such circumstances.
length of each film along the depth of the paper is assum
to be much larger than the other lateral dimensions, so
system is considered to be undergoing plane strain defor
tions. The total potential energy of the deformed films~ne-
glecting surface energy effects! is given by a sum of the
stored elastic energy and the energy due to intersurface
teractions@3#,
d-
©2003 The American Physical Society07-1
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P5E
V
W~e!dV1E

S
U~d!dS, ~1!

wheree is the strain tensor andW is the strain energy densit
given by the following expression:

W~e!5H maS e:e1
na

122na
~ tr e!2D in film a,

mbS e:e1
nb

122nb
~ tr e!2D in film b.

~2!

The term under the surface integral in Eq.~1! arises due to
the attractive interaction potential that exists between the
films. The attractive potentialU is the excess free energy o
interactions per unit area, which may be due to van
Waals forces, electrostatic forces, etc., and is a function
the intersurface distanced. The form of the potential may be
simply van der Waals~3!, or an extended form given by Eq
~4!:

U~d!52
A

12pd2
, ~3!

U~d!52
A

12pd2
1

B

d8
1SexpFde2d

l p
G , ~4!

where

d5d02~ua2ub!•n ~5!

is the effective separation distance that remains between
two films when they undergo a displacement ofua and ub,
respectively, from their undeformed separationd0. The first
term in the potential comes from the attractive van der Wa
interaction, whereA is the Hamaker constant~of the order of
10219 J). The second term arises due to Born repulsion

FIG. 1. A thin elastic film bonded to a rigid substrate interacti
with a second film bonded to a contactor. The coordinate sys
(x1 ,x2) is used to describe the position vectors.~Distances are no
to scale. The gap distance is largely exaggerated and the da
lines indicate the initial stages of roughening.!
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the third term introduces a short range non–van der Wa
attraction (S,0) close to contact with a decay lengthl p .
This term also incorporates the non–van der Waals com
nent of the free energy of adhesion. The constantsB andS in
Eq. ~4! are of the order of 10274 J m6 and 20.1 J/m2, re-
spectively, and their exact values are obtained by impos
the following conditions at the equilibrium separation d
tancede , taken to be 1 nm in the present analysis:

U8~de!50,

U~de!5DG5total energy of adhesion. ~6!

A sketch of the potential is shown in Fig. 2. As is know
previously for a single film@3#, and as will also be shown
subsequently in this paper, neither the precise functio
form of the potential, nor the precise values of the para
eters in the potential, are of significance since the wa
length of instability is independent of the nature of intera
tions. The details of the potential affect only the critic
separation distance for the onset of instability.

In order to carry out a linear stability analysis, the pote
tial is expanded in a power series about the reference sta
the undeformed filmsd5d0 and the terms up to the qua
dratic order in (ua2ub)•n are retained@see Eq.~4!#,

U~d!'U01F~ua2ub!•n

1
1

2
Y@~ua2ub!•n#2, ~7!

where

U05U~d0!, F5U8~d0!, Y5U9~d0!. ~8!

The formY is of the form~9! or ~10! depending on the form
of the potential~3! or ~4!,

m

ed
FIG. 2. Schematic of the potential under consideration. T

equilibrium distance is denoted byde .
7-2
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Y52
A

2pd0
4

, ~9!

Y52
A

2pd0
4

1
72

d0
10

@A~12de/2l p!/6pde
32DG/ l p#de

9

~82de / l p!

1
~8DG1A/2pde

2!

l p
2~82de / l p!

expS de2d0

l p
D . ~10!

From the above equation it is clear that with decreasing
tial gap thicknessd0, the magnitude ofY increases in the
attractive regime of the potential. The dimensions ofY sug-
gest that it is force per unit volume and is termed theinter-
action stiffness, and it is of importance in that it governs th
condition for the onset of instability~below a critical sepa-
ration distance the magnitude ofY, or the attractive force
increases beyond a threshold value to initiate instabilitie
the system!. Similarly, F is the force per unit area. The abov
linearization gives an expression for the total potential
ergy as

Pa5E
V
W~e!dV1E

S
FU01F~ua2ub!•n

1
1

2
Y~~ua2ub!•n!2GdS. ~11!

The equilibrium displacement fields in the films minimiz
the potential energy~11! while satisfying the following
boundary conditions.

~1! Rigid boundary condition:

ua~x1 ,2ha!50, ~12!

ub~x1 ,d01hb!50, ~13!

i.e., the substrate and the contactor films are rigidly held
the film-substrate and the film-contactor interface.

~2! Traction boundary condition: The stresses deriv
from the displacement fields must satisfy the condition
vanishing shear stress at the interface, i.e.,

s12
a ~x1,0!50, ~14!

s12
b ~x1 ,d0!50, ~15!

and the normal stresses satisfy the condition

s22
a ~x1,0!52$F1Y@u2

a~x1,0!2u2
b~x2 ,d0!#%, ~16!

s22
b ~x1 ,d0!52$F1Y@u2

a~x1,0!2u2
b~x2 ,d0!#% ~17!

at respective surfaces.
Homogeneous solution.The boundary value problem de

fined by the above set of equations for compressible fi
has a homogeneous solution denoted byuh such that the
stresses in the films are everywhere equal. Thus,u2

h denotes
a uniform increase in the film thickness,
03160
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u1
ah~x1 ,x2!50,

u1
bh~x1 ,x2!50,

u2
ah~x1 ,x2!52

1

Ym
a $F1Y@u2

ah~x1,0!

2u2
bh~x2 ,d0!#%S 11

x2

ha
D ,

u2
bh~x1 ,x2!52

1

Ym
b $F1Y@u2

ah~x1,0!2u2
bh~x2 ,d0!#%

3S x2

hb
212

d0

hb
D , ~18!

where

Ym
a 5

2ma~12na!

~122na!ha
, ~19!

Ym
b 5

2mb~12nb!

~122nb!hb
. ~20!

The homogeneous solution indicates that for compress
films the surface of both the films will move towards ea
other by an amountUh given by

Uh5
~2F !

Ym2~2Y!
, ~21!

whereYm for the system is given by

Ym5
Ym

a Ym
b

Ym
a 1Ym

b
. ~22!

From this relation it is evident that the homogeneous solut
is valid only when2Y,Ym (2F, 2Y, andYm being posi-
tive quantities!. For larger values of2Y, the film surfaces
jump to make homogeneous contact with each other so
the films are everywhere in contact.

III. STABILITY ANALYSIS

The stability of the homogeneous state is evaluated
means of a linearized analysis. The homogeneous solutio
perturbed by sinusoidal displacements. The bifurcation fi
in the filmsa andb takes the form

u2
ai~x1,0!5a cos~kx1!, ~23!

u2
bi~x1 ,d0!5b cos~kx1!, ~24!

respectively. Herei in the superscript denotes inhomog
neous solution. Theadditional stressesproduced by these
fields satisfy the rigid boundary conditions~12! and ~13!,
vanishing shear stress conditions given by Eqs.~14! and
~15!, and the condition of normal traction
7-3
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s22
ai~x1,0!52Y@u2

ai~x1,0!2u2
bi~x1 ,d0!#, ~25!

s22
bi~x1 ,d0!52Y@u2

ai~x1,0!2u2
bi~x1 ,d0!# ~26!

along the interacting surfaces of the films.
A film with sinusoidal displacement as given in Eq.~23!

is shown in Appendix A to have stresss22
ai at the surface of

the film as

s22
ai~x1,0!52maS~hak,na!ka cos~kx1!. ~27!

Similarly, the stresss22
bi(x1 ,d0) along the surface of the film

b is

s22
bi~x1 ,d0!522mbS~hbk,nb!kb cos~kx1!, ~28!

whereS is a nondimensional function defined as

S~j,n!5
11~324n!cosh~2j!12j214~2n21!~n21!

2~12n!@~324n!sinh~2j!22j#
.

~29!

The stresses along the surface of the film must satisfy
normal traction condition. Thus substitution of Eqs.~27! and
~28! in Eqs.~25! and~26! sets the condition for the existenc
of nontrivial bifurcation fields. It states that the interactio
stiffnessY must be related to the physical parameters of
system along with the wave numberk ~of the bifurcation
field! by the following expression:

Y52
2kmambS~hak,na!S~hbk,nb!

maS~hak,na!1mbS~hbk,nb!
. ~30!

If, for a given value ofY, i.e, for a given interaction stiffness
and a given separation distance there exists at least one
value ofk that solves Eq.~30!, then the homogeneous solu
tion is unstable and the films deform inhomogeneously. T
negative sign ofY indicates that the force is attractive
nature. The analysis is carried forth with2Y, denoting the
magnitude of the interaction stiffness. Thelowest valueof

FIG. 3. Plots of the wave number of instability (hkc) and the
nondimensional critical interaction stiffness (2Yc /Ke f f) for a sys-
tem withH50.5 andM50.5. The thick line in the diagrams show
the demarcation between regions of homogeneous and inhom
neous deformations. In the region enclosed by the line,hkc50 and
2Yc /Ke f f takes the value ofYm /Ke f f for plots in the right column.
03160
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2Y for which bifurcations are possible is called thecritical
interaction stiffnessdenoted by2Yc . The wave number~s!
of the mode~s! that satisfies~satisfy! Eq. ~30! for 2Y5
2Yc is ~are! called the critical mode~s! and the~these! wave
number~s! is ~are! denoted bykc .

Apart from the Poisson’s ratio, there are four paramet
that enter the stability analysis,ma , mb , ha , hb and govern
the stability of the film surfaces. The understanding of resu
is facilitated by defining certain effective parameters as m
tivated by the following analogy. Two interacting films ca
be visualized as two springs in series so that they unde
the same loading~tensile or compressive!. In such cases it is
seen that the total thickness of the system is the addi
thickness and the effective elastic modulus is the harmo
mean of the individual modulus of the springs. From th
analogy, we introduce the effective thickness and sh
modulus of the system as

h5ha1hb , ~31!

m5
mamb

ma1mb
. ~32!

Introduction of the following nondimensional parametersM
and H further facilitates the investigation of the relative e
fects of the two films on the instability where

m

ma
5M ,

m

mb
5~12M ! ~33!

and

ha5Hh, hb5~12H !h. ~34!

An important quantity of interest is the effective elastic sti
nessKe f f of the two-film system defined as the harmon
mean of the individual stiffness of the films.

ge-

FIG. 4. Regions of homogeneous and inhomogeneous defo
tions in the space of Poisson’s ratios of the films for different valu
of M. The films have equal thicknesses.
7-4
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Ke f f5

ma

ha

mb

hb

ma

ha
1

mb

hb

5
mamb

mahb1mbha

5
m

h

1

@~12H !~12M !1HM #
. ~35!

Based on the above definitions, the expression for

FIG. 5. Plots of the wave number of instability (hkc) and the
nondimensional critical interaction stiffness (2Yc /Ke f f) for differ-
ent values ofM, when the films have equal thicknesses. The th
line in the diagrams shows the demarcation between region
homogeneous and inhomogeneous deformations. In the region
closed by the line,hkc50 and 2Yc /Ke f f takes the value of
Ym /Ke f f for plots in the right column.
03160
e

interaction stiffness in Eq.~30! can be recast in the following
nondimensional form:

2Y

Ke f f

5
2@~12H !~12M !1HM #qS~Hq,na!S„~12H !q,nb…

~12M !S~Hq,na!1MS„~12H !q,nb…
,

~36!

whereq5hk.
The stability conditions of an incompressible two-fil

model can be recovered by setting values ofna andnb to 1
2

in Eq. ~36!. The other limiting cases of Eq.~36! can be
obtained by settingM→1 andH→1.

The conditionM→1(mb@ma) implies that the contacto
film is much more rigid compared to the substrate film and
view of this, the above equation transforms to

2
Y

Ke f f
52HqS~Hq,na!52hakS~hak,na!, ~37!

which is the case of a compressible elastic film interact
with a rigid contactor. The other conditionH→1(ha@hb),
implies that the thickness of the substrate film is mu
greater than the thickness of the contactor film. Equat
~36! asH→1, transforms into

2
Y

Ke f f
5

2HqMS~Hq,na!

~12M !
S~Hq,na!

S„~12H !q,nb…
1M

. ~38!

The conditionS(j,n)→` as j→0, which when applied to
Eq. ~38! gives the same result as in Eq.~37!, i.e, the case of
a rigid contactor. Thus, it can be seen that the case of
incompressible films interacting with each other or the c
of a single film interacting with a contactor are special ca
of the present analysis.

IV. RESULTS AND DISCUSSIONS

The wave number of instability as found from Eq.~36! is
dependent on the compressibility~Poisson’s ratios! of the
films and on the nondimensional parametersM andH, which
can take values from 0 to 1. However, the symmetry of E
~36! in M and H allows to consider only the results in th
regime 1

2 <M<1 and 0<H<1. For each of these ranges o
ma ,mb andha ,hb , results are discussed for different valu
of na andnb . In each case, the aim is to obtain regions in t
(na ,nb) parameter space, where instability is possible~Figs.
4, 6, 8, and 9!. In addition, the wave number of the instabilit
and the critical interaction stiffness (2Yc /Ke f f) as a func-
tion of na andnb ~Figs. 3, 5, and 7! are also obtained.

To aid the discussion of the results of the two-film ca
we recall here some of the observations of a single ela
film interacting with a rigid contactor given in Ref@4#. The
wave number of instability (hkc) and the critical interaction
stiffness (2Yc) of the film were found to decrease with a
increase in compressibility of the film. Results for a sing

k
of
n-
7-5
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film are shown in Fig. 13. The physical significance of the
observations is that it is energetically less expensive to p
duce elastic deformations in a compressible film. Thus
critical interaction stiffness (2Yc) required for inhomoge-
neous deformation is higher for an incompressible film th
a compressible one. In addition, it is energetically favora
to produce near homogeneous deformations in a compr
ible film. Thus, the wavelength of instability (lc52p/kc) in
a compressible film is higher than that of an incompress
film. The discussion for case of two films can also be ba
on energetic arguments. The relevant expression for the
energy of two films as a function of the shear modulus of
films and the dimensionless functionS is shown in Appendix
B.

A. Films with equal thicknesses and shear moduli

When the thicknesses and shear moduli of the two fi
are equal (ha5hb andma5mb), the nondimensional param
etersH and M are both equal to1

2 . In the bifurcation dia-
grams, Figs. 4 and 6, such a case is indicated byM50.5 and
H50.5, respectively. It is seen that when the films ha
identical physical properties, the line demarcating the reg
of homogeneous and nonhomogeneous deformations is
metric in the parametric space ofna andnb . The results in
this case, forkc and 2Yc are shown in Fig. 3. If the Pois
son’s ratio of one film~saya) is kept fixed and the Poisson
ratio of the other film (nb) is decreased, the effective com
pressibility of the system increases. Similar to the one-fi
case, it is seen from Fig. 3 that2Yc /Ke f f andhkc values of
the system decrease.

The effects of introducing the second film are illustrat
for a system withna50.35 andnb50.45. The wave numbe
of instability of the systemhkc for this case is found to be
3.13 implying that the critical wavelength (lc52p/kc) at

FIG. 6. Regions of homogeneous and inhomogeneous defo
tions in the space of Poisson’s ratios of the films for different val
of H. The films have equal shear moduli.
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this point is 4.01ha . For a single film interacting with a rigid
contactor, the wavelength of instability forna50.35 andna
50.45 is found from Appendix B to be 5.05ha and 3.41ha ,
respectively. These results show that the wavelength of
stability in the two-film system lies between the waveleng
of the two films had they been interacting with rigid conta
tors. For the same point in the parametric space, the valu
the nondimensional interaction stiffness2Yc /Ke f f is 4.56.
For the present case, the effective stiffness of the syste
given by 0.5ma /ha , thus the value of the critical interactio

a-
s

FIG. 7. Plots of the wave number of instability (hkc) and the
nondimensional critical interaction stiffness (2Yc /Ke f f) for a sys-
tem with M50.5 and different values ofH. The thick line in the
diagrams shows the demarcation between regions of homogen
and inhomogeneous deformations. In the region enclosed by
line, hkc50 and2Yc /Ke f f takes the value ofYm /Ke f f for plots in
the right column.
7-6
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stiffness is given as2Yc52.28ma /ha . From Appendix B,
we see that for a film interacting with a rigid contacto
2Yc53.08ma /ha for na50.35 and2Yc55.17ma /ha for
nb50.45. This indicates that the critical interaction stiffne
of the two-film system is lower than either of the interacti
stiffnesses, had the films been interacting with rigid cont
tors. The results illustrate the fact that the introduction o
second film, in place of a rigid contactor, brings down t
effective stiffness of the system, makes the system m
compliant, and hence promotes instabilities in the system

B. Films with equal thicknesses and different shear moduli

For the case whenH50.5, the regions of homogeneou
and inhomogeneous deformations in the parametric spac

FIG. 8. Bifurcation zones as a function of the Poisson ratio a
H whenM50.7.

FIG. 9. Bifurcation zones as a function of the Poisson ratio a
M whenH50.1.
03160
-
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a function of the nondimensional parameterM are shown in
Fig. 4. It is observed that when the compressibilities of
films are very high (na,0.25 andnb,0.25), instabilities are
not possible, whereas they undergo inhomogeneous defo
tions in the parametric space ofna.0.25 andnb.0.25. This
is due to the fact that in a highly compressible film, t
energy of homogeneous deformation is lower than that
inhomogeneous deformation. In the regionna.0.25 andnb
,0.25, the greater the stiffness of the upper contactor fi
the more is the area in the parametric space available
inhomogeneous deformations. Consider now the case w
the substrate film is highly compressible (na,0.25), but the
contactor film is less compressible (nb.0.25). As the stiff-
ness of the contactor film increases its incompressibi
must also increase in order to cause instability. The limitM
→ 1, denotes a completely rigid contactor film~the energy
cost of deformation is infinite!. In such a case, the instabilit
is completely governed by the substrate film as is seen f
Fig. 4. These results are in accordance with the results
single film interacting with a rigid contactor@4# .

The effect of the relative shear moduli on the wave nu
ber of instability for films with equal thicknesses is depict
in Fig. 5. Forna,nb , the value ofhkc decreases with an
increase inM. For the case when the shear moduli of t
system are also equal, i.e.,M50.5, it was already shown in
the preceding section thathakc(na),hbkc(nb). Now, if the
shear modulus of filmb is only increased to makeM.0.5, it
follows that the wave number of instability of the filmb
increases,@hbkc(M.0.5).hbkc(M50.5)#, whereas,hakc
remains unchanged~asma is kept constant!. The decrease in
value ofhkc with increasingM indicates that the wave num
ber of the two-film system does not reflect the change,
shown by the stiffer filmb, but on the contrary decrease

d

d

FIG. 10. The value ofhakc as a function ofH andM. The figure
shows that above a certain value ofM, the wave number shows
jump from a higher to a lower value for a particular value ofHJ .
The Poisson ratios of the films taken arena50.45, nb50.4.
7-7



o
t

t
n
ra
g

en

io

o

t
th
is

on

e

d

tion

are

ns,

heir

m-

(
ld
ible.

b-
ility
3,

n

es

ar

of
lm
-

s

s

tio

SARKAR, SHENOY, AND SHARMA PHYSICAL REVIEW E67, 031607 ~2003!
towards the wave number close to the compliant filma. This
observation illustrates that the wavelength of instability
the system is determined to a much greater degree by
more compliant film. For a system withna.nb , the critical
wave number of instability increases with increase inM; this
may be reasoned along the same lines as given above tha
wavelength of instability is governed by the more complia
film. For films with equal thickness and equal Poisson’s
tio, the wave number of instability, however, does not chan
with the relative shear moduli of the system. This is evid
from the expression~36! by substitutingH50.5 and na
5nb .

It is seen from Fig. 5 that the nondimensional interact
stiffness2Yc /Ke f f behaves in a similar fashion ashkc , i.e.,
remains constant forna5nb , increases forna.nb , and de-
creases forna,nb . But an increase or decrease in value
2Yc /Ke f f does not imply an increase or decrease in2Yc ,
becauseKe f f , in this caseMma /ha , is always increasing
with an increase inM. Thus in the first two cases it is eviden
that2Yc of the system is increasing. It can be shown that
value of2Yc is increasing in the last case as well. For th
purpose take a point in the parametric spacena50.3 and
nb50.4, for M50.5, 2Yc /Ke f f53.96 and forM50.8,
2Yc /Ke f f53.63. The corresponding values of interacti
stiffness are given as2Yc51.98ma /ha and 2Yc
52.91ma /ha , respectively, showing that the value of th
critical interaction stiffness is actually increasing withM.
This result can be understood from the fact that asM in-
creases, the effective stiffness of the system increases an

FIG. 11. The shaded regions in the figure denote the value
HJ at which jumps occur.
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critical force required to cause inhomogeneous deforma
also increases.

C. Films with equal shear moduli but different thicknesses

For the case when the shear moduli of the two films
equal, it is seen from Fig. 6 that films in the regionna
,0.25 andnb,0.25 undergo homogeneous deformatio
whereas films with Poisson’s ratiosna.0.25 andnb.0.25
undergo inhomogeneous deformations, irrespective of t
relative thicknesses.

In the parametric space where the substrate film is co
pressible compared to the contactor film (na,0.25 andnb
.0.25), as the thickness of the substrate film increasesH
increases!, the incompressibility of the contactor film shou
increase for surface roughening in the system to be poss
In the limit of H→1 ~the case of a rigid contactor!, surface
instability is not possible when Poisson’s ratio of the su
strate film is less than 0.25, regardless of the compressib
of the contactor film. This result is also evident from Fig. 1
where it is seen thathkc50 for n,0.25.

Substitution ofM50.5 in Eq.~36! leads to an expressio
symmetric inH andn. Thus, for a given value ofH andna
the results are physically identical to that of 12H and nb .
This fact is evident from Fig. 6, where the demarcation lin
for different values ofH in the rangena,0.25,nb.0.25 are
identical for the lines for 12H in the rangena.0.25,nb
,0.25.

The effective stiffness of a system with equal she
moduli is given by an expressionKe f f5(12H)mb /hb ,
wherein we assume that the thickness of the filmb is kept
constant and that ofa is increased to have a higher value
H. It is evident that as the thickness of the substrate fi
increases~asH increases!, the effective stiffness of the sys
tem decreases. The decrease in the value ofhkc with H as
seen from Fig. 7 can be understood from the fact that aH

of

FIG. 12. The wavelength of instability as a function of the ra
of compliances whenna50.45 andnb50.35.
7-8
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increases the system becomes more compliant, implyin
larger wavelength for the instabilities.

For a region in parametric space withna>nb it is seen
that 2Yc /Ke f f increases withH and in a region withna
,nb it is seen that2Yc /Ke f f decreases with increasingH.
However, an increase in2Yc /Ke f f does not imply an in-
crease in critical force parameter, since it has already b
shown thatKe f f decreases with decreasingH. Since the com-
pliance of the system increases with increase inH, it is ex-
pected that2Yc should decrease with increasingH. The fol-
lowing values show that2Yc , in fact, decreases with
decreasingH for na>nb : for H50.5 andna50.4,nb50.3,
2Yc /Ke f f53.95→2Yc51.975mb /hb , for H50.7 andna
50.4,nb50.3,2Yc /Ke f f54.15→2Yc51.245mb /hb ;
showing 2Yc decreases with increase inH. These results
again indicate that the instability is governed by the m
compliant film.

D. Films with unequal thicknesses and moduli

The physics of instability in the general case can be
derstood based on the results of the previous cases. Com
son of Figs. 8 and 6 shows that the results forM.0.5 and
different values ofH are qualitatively similar to the case wit
M50.5. Although the figures are quantitatively different~for
example, the symmetry of the demarcation lines as in
caseM50.5, is absent in Fig. 8!, the results can still be
analyzed in a similar fashion as done forM50.5.

However, for very small values ofH and very high values
of M, some qualitative changes in the results are obser
Very small values ofH imply that the thickness of filmb is
much higher than filma, thus film b is the more compliant
film which dictates the instability of the system. In Fig. 9, t
horizontal demarcation lines for 0.5,M,0.9 indicate that
the system behaves as if filmb is interacting with a rigid
contactor and the effect of the presence of filma is negli-
gible. However, for higher values ofM (M.0.9), the shear
modulus of filmb becomes large than that of filma to the
extent that the ratiomb /hb exceedsma /ha , making film a
the more compliant film. The transition of the horizontal lin
in the bifurcation diagram to the vertical one indicates tha
is film a rather than filmb that acts as the dominant film an
governs the instability.

The values ofhakc with na50.45,nb50.4 as a function of
H for different values ofM are shown in Fig. 10. It is see

FIG. 13. Variation of bifurcation modehkc and critical interac-
tion stiffness 2hYc /m as a function of n. The values of
2hYc /m only in the range wherehkc.0 are shown.
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that for each value ofM in the rangeM→1, there is a value
of H ~designated asHJ) where the value ofhakc jumps from
a higher value to a lower value on decreasingH. For M
50.95 atHJ50.095, the value ofhakc changes from'1.61
to '0.193. The latter can also be represented ashbkc

51.55. Thus the instability mode of filma jumps from a
higher value to a wave number that corresponds to the c
cal wave number of the filmb, had it been interacting with a
rigid contactor.

For given values ofna andnb the value ofHJ decreases
with increasingM. For example, whenna50.45,nb50.4, it
is seen from Fig. 11 thatHJuM50.9350.129,HJuM50.99

50.0215. ForM→1, film b moves towards the limit of a
rigid contactor and for values ofH much larger than zero
film ‘‘ a’’ is the more compliant film. However, ifH is made
close to zero, i.e, filma is made much thinner than filmb, it
is possible to make filma stiffer than film b and the insta-
bility will then be governed by film ‘‘b. ’’ The value ofH at
which this occurs isHJ and for all values ofH smaller than
this value, instability is governed by filmb. Thus as the value
of M increases the value ofHJ must decrease to make th
‘‘jump’’ possible.

For a fixed value ofM, now keepingna fixed if nb is
increased, the factor 2(12nb)/(122nb) @of the term (1
22n)h/2m(12n) , which designates the compliance C of
film# increases, increasing the stiffness of filmb and making
film a the compliant film. However, if the contactor-film
thicknesshb is also increased, the stiffness of filmb de-
creases, and may even become lesser than that of filma.
When this happens the jump occurs, or filmb becomes the
new dominant film. This is evident from Fig. 11, where it
seen that asnb increasesHJ value decreases to fulfill the
condition for the jump.

E. Role of compliance of the films

All the above results underline the fact that the comp
ances of the films play an important role in determining t
dominant film. This point can be further illustrated from Fi
12. The figure depicts that when the compliances of the fi
are very different (Ca /Cb ratio quite greater than 1), th
wavelength of the system is governed by the more compl
film ~that is, filma in this case! for all values ofH. The role
reversal of the dominant film mainly occurs in the range
Ca /Cb varying from 0 to 1. The transit is smooth for highe
values ofH but for smaller values ofH the change is abrup
close to the ratio of 1, which is designated as jump in
previous results.

V. CONCLUSION

The analysis of the surface instability of two compressi
interacting elastic films reveals several interesting resu
The analysis pursued here represents the most general
of instability in soft thin elastic films from which all of the
previous results@3,20# can be obtained as various limitin
cases, for example, a single film interacting with a rigid co
tactor, two interacting incompressible films, etc.

~1! Surface roughening of the film surfaces is possi
7-9
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when the separation between the two films is below a crit
distance, or, in other words, the attractive interaction fo
between the two films exceeds a critical value. The wa
length of the inhomogeneous periodic deformation is, ho
ever, independent of the precise nature of attractive inte
tions, but depends on the film thicknesses, ratio of sh
moduli, and Poisson’s ratios of the films.

~2! It is shown that the introduction of a second film
place of a rigid contactor makes the system more compli
The critical force required to cause instabilities in a mo
compliant system is less compared to the case when a s
film interacts with a rigid contactor. For example, it can
seen in Fig. 4 that the introduction of a contactor film cau
surface instability in a compressible film, which is otherwi
stable against inhomogeneous deformation.

~3! Irrespective of the shear moduli and thicknesses of
films highly compressible films~Poisson’s ratio of both films
less than 0.25) that are also highly compliant, deform hom
geneously and jump in contact uniformly without any su
face roughening. The same behavior was also observed i
case of a single elastic film interacting with a rigid contac
@3,4#. Thus, for almost all materials of interest (n.0.25),
surface roughening should occur readily below a criti
separation.

~4! The compliance of a film is defined by (
22n)h/2m(12n). The most important result found from
the present analysis is that the properties of the more c
pliant film have a much greater influence on the wavelen
of instability. When the compliances of the two films a
very different, the wave number is a smooth function of t
compliance ratio. However, when parameters are change
the rangeH→0,M→1 such that the two compliances b
come similar, there is an abrupt change in the wave num
of instability. On either side of this jump, however, the wav
length is governed largely by the properties of the more co
pliant film.

The above results presented are expected to be usef
the design and interpretation of important experiments
lated to cavitation, adhesion, and friction at soft interface
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APPENDIX A: TRACTION ALONG THE SURFACE OF
AN ELASTIC FILM BONDED TO A SUBSTRATE
WITH SINUSOIDAL SURFACE DEFORMATION

This section formulates the normal traction along the
nusoidally deformed surface of a film bonded to a rigid su
strate. The system under consideration can be visual
from Fig. 1, when the top contactor is either very stiff or h
a negligible thickness, and is subjected to the followi
boundary conditions:

u1
ai~x1 ,2h!5u2

ai~x1 ,2h!50,
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u2
ai~x1,0!5a cos~kx1!, s12

ai~x1,0!50. ~A1!

The equilibrium equation of the system in terms of the d
placements is given by the Navier’s equation

~122n!ul ,mm1um,ml50. ~A2!

A general solution for the above set of differential equatio
which anticipates a sinusoidally deformed surface, is giv
by

u1
ai~x1 ,x2!52

a

k
$@B~324n!1k~A1Bx2!#ekx2

1@D~324n!2k~C1Dx2!#e2kx2%sin~kx1!,

u2
ai~x1 ,x2!5a@~A1Bx2!ekx21~C1Dx2!e2kx2#cos~kx1!,

~A3!

where the constantsA, B, C, and D can be determined by
substituting the boundary conditions~A1! in Eq. ~A3!. The
solution yields

A5$2~kh1k2h222nkh!ekh cosh~kh!

1~2n221kh!@~324n!ekh cosh~kh!

1khekh sinh~kh!#%

/$~n21!@2~324n!sinh~2kh!24kh#%,

B5@~22n1kh11!ekh sinh~kh!2~2n221kh!

3ekh cosh~kh!#/~n21!@2~324n!sinh~2kh!24kh#,

C512A,

D5B2
k

2~n21!
. ~A4!

From these relations, the expression for the normal co
ponent of traction along the surface of the film can be
rived as

s22
ai~x1,0!5

2m

~122n!
@nu1,11~12n!u2,2#

52m@ka cos~kx1!#~A2C!

12m~122n!a cos~kx1!~B1D !. ~A5!

Replacement of the values ofA, B, C, andD simplifies the
expression to

s22
ai~x1,0!52mS~kh,n!ka coskx1 , ~A6!

where the functionS is defined in Eq.~29!.

APPENDIX B: ELASTIC ENERGY STORED PER UNIT
LENGTH OF THE SYSTEM

The elastic energy stored in the film of lengthL is given
by
7-10
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PE5E
V

1

2
s lm

ai « lm
ai dV5E

V

1

2
s lm

ai ul ,m
ai dV

5E
V

1

2
@s lm

ai ul
ai#mdV5E

S

1

2
@s lm

ai #ul
ainmdS

5E
top-inter f ace

1

2
@s22

ai #u2
aidS, ~B1!

surface integrals over all other interfaces are zero.
Thus assuming a surface profile of the form

u2
ai~x1,0!5a cos~kx1!, ~B2!

we get the stored elastic energy per unit length of the film
the form
ys

tt

M

r,

03160
n

PE5
1

LE0

L1

2
s22

ai~x1,0!u2
ai~x1,0!dx1

5
1

LE0

L1

2
@2mS~kh,n!ka cos~kx1!#a cos~kx1!dx1

5
m

L
S~kh,n!ka2L5a2kmS~kh,n!. ~B3!

The variation of the wave number that minimizes Eq.~B3!,
with the Poisson’s ratio of the film is shown in Fig. 13. In th
same figure, the corresponding critical interaction stiffnes
also shown. The expression forYc can be obtained from Eq
~30! by settingmb@ma or ha@hb .

For the interacting two-film system described in the te
the total elastic energy stored per unit length of the films
the sum of the energies stored in the individual films and
given by the expression

PE5a2kmaS~hak,na!1b2kmbS~hbk,nb!. ~B4!
, J.

5.
@1# A. Ghatak, M.K. Chaudhury, V. Shenoy, and A. Sharma, Ph
Rev. Lett.85, 4329~2000!.

@2# W. Mönch and S. Herminghaus, Europhys. Lett.53, 525
~2001!.

@3# V. Shenoy and A. Sharma, Phys. Rev. Lett.86, 119 ~2001!.
@4# V. Shenoy and A. Sharma, J. Mech. Phys. Solids50, 1155

~2002!.
@5# K.R. Shull, C.M. Flanigan, and A.J. Crosby, Phys. Rev. Le

84, 3057~2000!.
@6# S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery,

Ibn-Elhaj, and S. Schlagowski, Science282, 916 ~1998!.
@7# A. Sharma and R. Khanna, Phys. Rev. Lett.81, 3463~1998!.
@8# G. Reiter, R. Khanna, and A. Sharma, Phys. Rev. Lett.85,

1432 ~2000!.
@9# E. Scha¨ffer, T. Thurn-Albrecht, T.P. Russel, and U. Steine
.

.

.

Nature~London! 403, 874 ~2000!.
@10# R.J. Asaro and W.A. Tiller, Metall. Trans.3, 1789~1972!.
@11# M. Grinfeld, J. Nonlinear Sci.3, 35 ~1993!.
@12# D. Srolovitz, Acta Metall.37, 621 ~1989!.
@13# J.C. Ramirez, Int. J. Solids Struct.25, 579 ~1989!.
@14# D.A. Kessler, Nature~London! 413, 260 ~2001!.
@15# L. Kogan, C.-Y. Hui, and A. Ruina, Macromolecules29, 4090

~1996!.
@16# M. Newby, B.Z. Chaudhury, and H. Brown, Science269, 1407

~1995!.
@17# C. Gui, M. Elwenspoek, N. Tas, and J.G.E. Gardeniers

Appl. Phys.85, 7448~1999!.
@18# R. Budakian and S.J. Putterman, e-print cond-mat/020307
@19# C. Ru, J. Appl. Phys.90, 6098~2001!.
@20# V. Shenoy and A. Sharma, Langmuir18, 2216~2002!.
7-11


